Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 249: 120825, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118222

RESUMO

Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.


Assuntos
Água Potável , Urânio , Água Potável/análise , Urânio/análise , Carvão Vegetal , Adsorção , Polímeros , Concentração de Íons de Hidrogênio
2.
Sci Total Environ ; 885: 163695, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37100133

RESUMO

Chromium (Cr) is a toxic inorganic contaminant for drinking water, in which the concentration has to be controlled for human health and safety. Cr retention was investigated with stirred cell experiments using sulphonated polyethersulfone nanofiltration (NF) membranes of different molecular weight cut-off (MWCO). Cr(III) and Cr(VI) retention follow the order of the MWCO of the studied NF membranes; HY70-720 Da > HY50-1000 Da > HY10-3000 Da with a pH dependency, especially for Cr(III). The importance of the charge exclusion was highlighted when Cr(OH)4- (for Cr(III)) and CrO42- (for Cr(VI)) was the predominant species in the feed solution. In presence of organic matter, namely humic acid (HA), Cr(III) retention increased by 60 %, while no influence of HA was observed for Cr(VI). HA did not induce major modifications on the membrane surface charge for these membranes. Solute-solute interaction, in particular Cr(III)-HA complexation, was the responsible mechanism for the increase in Cr(III) retention. This was confirmed by asymmetric flow field-flow fractionation, coupled with inductively coupled plasma mass spectrometry (FFFF-ICP-MS) analysis. Cr(III)-HA complexation was significant at HA concentrations as low as 1 mgC/L. The chosen NF membranes were able to achieve the EU guideline (25 µg/L) for Cr in drinking water for a feed concentration of 250 µg/L.

3.
Sci Total Environ ; 878: 162794, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36914135

RESUMO

Drinking water in The Gambia is mostly derived from boreholes that could potentially be contaminated. The Gambia River, a major river in West Africa that covers 12 % of the country's area, could be more exploited for drinking water supply. During the dry season, the total dissolved solids (TDS), ranging from 0.02 to 33 g/L in The Gambia River, decreases with the distance to the river mouth with no major inorganic contamination. The freshwater (<0.8 g/L TDS) starts from Jasobo at approximately 120 km from the river mouth and extends by about 350 km to the eastern border of The Gambia. With a dissolved organic carbon (DOC) ranging from 2 to 15 mgC/L, the natural organic matter (NOM) of The Gambia River was characterised by 40-60 % humic substances of paedogenic origin. With such characteristics, unknown disinfection by-products could be formed if chemical disinfection, such as chlorination, was implemented during treatment. Out of 103 types of micropollutants, 21 were detected (4 pesticides, 10 pharmaceuticals, 7 per- and polyfluoroalkyl substances (PFAS)) with concentrations ranging from 0.1 to 1500 ng/L. Pesticides, bisphenol A and PFAS concentrations were below the stricter EU guidelines set for drinking water. These were mainly confined to the urban area of high population density near the river mouth, while the quality of the freshwater region of low population density was surprisingly pristine. These results indicate that The Gambia River, especially in its upper regions, would be well suited as a drinking water supply when using decentralised ultrafiltration treatment for the removal of turbidity, as well as, depending on pore size, to a certain extent microorganisms and DOC.


Assuntos
Água Potável , Fluorocarbonos , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Rios/química , Qualidade da Água , Gâmbia , Estudos Prospectivos , Poluentes Químicos da Água/análise , Abastecimento de Água , Fluorocarbonos/análise
4.
Sci Total Environ ; 829: 154287, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35248638

RESUMO

Selenium (Se) is a dissolved oxyanion drinking water contaminant requiring appropriate removal technologies. The removal of selenite (SeIV) and selenite (SeVI) with nanofiltration (NF) was investigated with an emphasis on the role of Se speciation and membrane charge screening on the retention mechanisms. The pH (2 to 12) showed strong pH dependence of Se retention, which was due to the speciation. No significant impact of salinity was observed by increasing NaCl concentration from 0.58 to 20 g/L. Application of the Donnan steric pore partitioning model with dielectric exclusion (DSPM-DE) showed that Donnan exclusion was the dominant retention mechanism for the oxyanions Se species. Nine different organic matter (OM) types were investigated at 10 mgC/L to determine if OM affects Se retention. Only OM characterised by negatively charged fractions, such as humic acid (HA), enhanced Se retention with NF270 of up to 20% for SeIV and 10% for SeVI. This was explained by enhanced Donnan exclusion. NF270 was effective in removing Se from real water (Gahard groundwater, Ille et Vilaine, France). The EU guideline (20 µg/L) of Se in drinking water was achieved with comparable performance to OM-free experiments using synthetic waters.


Assuntos
Água Potável , Selênio , França , Substâncias Húmicas/análise , Ácido Selenioso , Selênio/análise
5.
Water Res ; 201: 117315, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34198199

RESUMO

The removal of arsenic(III) (As(III)) with nanofiltration (NF) was investigated with emphasis on the role of salinity, pH and organic matter on retention mechanisms. While no measurable impact of salinity on As(III) retention with NF membranes (NF270 and NF90) was observed, a significant increase in As(III) retention occurred from pH 9 to pH 12. This was explained by As(III) deprotonation at pH > 9 that enhanced Donnan (charge) exclusion. Of the five different organic matter types investigated at 10 mgC/L, only humic acid (HA) increased As(III) retention by up to 10%. Increasing HA concentration to 100 mgC/L enhanced As(III) retention by 40%, which was attributed to As(III)-HA complexation. Complexation was confirmed by field-flow fractionation inductively coupled plasma mass spectrometry (FFF-ICP-MS) measurements, which showed that the bound As(III) increased with HA concentration. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that NF90, which exhibited lower permeability reduction than NF270, has accumulated a lower amount of As(III) in the presence of HA, where As(III)-HA complex was formed in the feed solution. This finding implies that As(III) retention with NF technology can be enhanced by complexation, instead of using other methods such as oxidation or pH adjustement.


Assuntos
Arsênio , Substâncias Húmicas/análise , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...